
 

 

  
Abstract— We present a comparative performance analysis 

between the patterns resulting from the Kohohen’s Self-Organizing 
Maps (SOM)  and the k-means clustering approaches in the domain 
of atmospheric circulation type classification. The study utilizes 
mean daily sea level pressure (MSLP) data for the spring months of a 
62-year period (1948 to 2009) on a grid with 2.5ox2.5o in the area of 
southeastern Europe. Both schemes provide realistic classifications, 
differentiating in the number of the resulting circulation patterns. The 
two methods are compared by examining the distribution of each 
SOM circulation type members (days) to every k-means type and by 
investigating the pressure field correspondence along with their 
monthly and cumulative frequencies of occurrence. High similarity is 
observed, especially for the patterns where atmospheric circulation is 
controlled from high-pressure barometric systems. The SOM method 
is found to be superior, due to its ability to generate a non-linear 
classification and produce a map where closely related atmospheric 
modes are described by neighboring neurons and positioned in 
adjacent locations. 
 

Keywords— atmospheric circulation classification, data 
clustering, k-means clustering, Self-Organizing Maps. 

I. INTRODUCTION 
YNOPTIC climatology is defined as the linkage of 
atmospheric circulation and environmental response [1]  
and is often based on the successful classification of 

atmospheric conditions into a number of different 
representative states [2]. The procedure is called circulation 
type classification and deals with a small number of discrete 
circulation types for analyzing the variability of atmospheric 
circulation in terms of their frequency changes on different 
temporal and spatial scales [3]. The classification schemes can 
be subdivided into subjective and automated methods, 
depending on the procedure that is used to assign atmospheric 
fields into the resulting classes. The subjective or manual 
schemes employ the expert’s knowledge for identifying the 
atmospheric circulation types and are typically based on the 
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visual analysis of daily weather maps. Some of the most 
noteworthy subjective classifications for the European 
continent are the Lamb catalogue of the British Isles weather 
types [4] and the Grosswetterlagen synoptic catalogue for 
central Europe [5] and [6]. Subjective methods are time 
consuming and in many cases they cannot be applied as the 
scientist faces the problem of effectively assigning the 
complex multi-dimensional fields into corresponding types.  

On the contrary, automated classification schemes 
essentially employ statistical methods for analyzing 
atmospheric data, with the objective of generating groups of 
cases with increased internal similarity and at the same time 
increased external separability. An extensive database of 
weather and automated circulation type classification schemes 
in Europe is presented in [7]. According to Huth [8] the 
automated methods can be further classified into the following 
categories: 

• Correlation method 
• Sum-of-squares method 
• Cluster analysis methods 
• Principal components analysis. 

The examination of the interaction between atmospheric 
circulation and meteorological parameters is of great interest 
in an area like the Mediterranean as it is characterized by the 
increased seasonal climatic variability and distinct alternations 
of weather patterns. Hence, many attempts have been made to 
examine this relationship, especially in Greece at the eastern 
Mediterranean by both automated [9] - [12] and subjective 
methods [13] - [14]. 

The objective of this work is to examine and compare the 
resulting patterns from two different cluster analysis 
approaches by examining their correspondence using 
qualitative and quantitative criteria. The adopted methodology 
along with the essential theoretical background of the 
classification schemes is analyzed in the second section of this 
work, while the resulting circulation patterns and their 
comparison in the third part of this paper. In the concluding 
part of this work the results are discussed and a two-step 
classification scheme, based on the strengths and weaknesses 
of the two approaches, is proposed. 

II. METHODS 

A. Area of study and data 
In this study and for classifying atmospheric circulation, 
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mean daily averaged sea level pressure (MSLP) data are 
acquired from the NCEP/NCAR Reanalysis 1 project [15] that 
produces a global analyses record of atmospheric fields. The 
reanalysis dataset covers the period from 1948 to 2009 on a 
grid with a 2.5ox2.5o resolution. The selected spatial domain is 
from 30oN to 60oN and from 10oW to 37.5oE, which contains 
260 grid points in total. The classification is performed for the 
transitional period of spring (March to May), leading to a 
subset of 5704 MSLP fields (days). In southeastern Europe, 
spring is one of the most significant seasons in terms of 
atmospheric circulation as the weather alternates from cold to 
warm period types. The clustering algorithms treat each of the 
5704 days as a different object while the 260 grid point MSLP 
values are the elements (variables) of each object. SLP data 
are extracted for the European continent domain (Fig. 1). 

 

 
Fig. 1 European continent domain 

B. Methodology 
The atmospheric circulation for the period and area under 

study is examined using two different clustering approaches, 
k-means and Self-Organizing Maps. The two approaches have 
been used widely for the analysis and classification of 
synoptic situations, as well as other meteorological 
parameters, in different application domains [16] - [19], such 
as the wind velocity and solar energy forecast [20], the 
determination of the power/energy level losses [21] and the 
detection of the land cover change [22].  

The first classification scheme employs a traditional 
clustering algorithm (k-means). The k-means method is the 
most widely known data-clustering scheme and has been 
extensively used in environmental sciences for grouping 
objects into respective categories (e.g. [23] and [24]). It is a 
nonhierarchical clustering approach with the inherent 
advantage of allowing the relocation of misplaced objects as 
the analysis proceeds [25]. The method defines k centroids, 
one for each cluster, and associates each object to the nearest 
centroid. It uses an iterative algorithm that finds the local 
minimum of the sum of object-to-centroid Euclidean 
distances, summed over all k clusters according to: 
 

                 (1) 
 

where  is the Euclidean distance of the object  and 
the centroid . 

The k-means method consists of two steps. Initially the 
Principal Components Analysis (PCA) is used to reduce the 
dimensionality of the dataset and subsequently the k-means 
clustering is performed. The PCA method transforms the high-
dimensional space into fewer dimensions and in our case the 
initial 5704x260 dataset is reduced to a 5704x25 subset by 
using the first 25 principal components that describe the 
99.01% of the total variation. This preprocessing step is 
essential for the efficient classification of MSLP data. 

The second approach is the Self-Organizing Map (SOM) 
algorithm, introduced by Kohonen [26], which is an 
unsupervised neural network model used for classification and 
feature extraction of high-dimensional data. The SOM 
converts the complex, nonlinear statistical relations of the 
high-dimensional input data into simple geometric relations at 
a typically two-dimensional map [27]. Such a property is 
highly desirable in meteorology and synoptic climatology, 
where the nonlinearity is a primary characteristic of 
atmospheric field data [10]. A detailed survey of SOM 
applications in meteorology and oceanography is presented in 
[28], while a description of its applications in climate studies 
can be found in [29]. The SOM neural network model consists 
of an input layer and a two-dimensional lattice of neurons, the 
output or competitive layer, which is fully connected to the 
input space. Initially the number of neurons is selected and 
their weight vectors are randomly initialized. Subsequently a 
training vector is presented to the network and the Euclidean 
distances between the training vector and the neurons’ weight 
vectors are calculated. The neuron that produces the smallest 
distance is called the Best Matching Unit (BMU) and its 
weight vectors along with its neighboring neurons weight 
vectors are updated towards the input vector. The input 
vectors are presented sequentially in the network and by using 
iterative training the neurons are adjusted in a way that 
different parts of the SOM respond similarly to certain input 
patterns. The final part of the SOM method is the visualization 
of the results, where each training vector is associated with 
one neuron, which represents the resulting patterns of the 
classification process. According to Haykin [30], the main 
properties of the SOM lattice are: 
• The approximation of the input space, as it is estimated 

from the weight vectors 
• Topological ordering, where a location within the lattice 

corresponds to a specific feature of the input patterns 
• Density matching, as more neurons are allocated to 

represent dense areas of the input space 
• Feature selection as the method selects the best features to 

approximate the underlying distribution. 
The optimum configuration consists of 20 nodes, 

organized into a 5x4 array (Fig. 2).  
The SOM methodology has been applied in southeastern 

Europe for associating wintertime precipitation and large-scale 
atmospheric variability [16] and for identifying synoptic 
patterns based on 500hpa level geopotential height [10]. 
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Fig. 2 SOM classification topology and absolute frequency of 
occurrence  

The main drawback of both classification schemes is the 
requirement of a predefined number of clusters. In circulation 
type classification there is no a priori knowledge of the 
number of the resulting patterns and therefore both methods 
are repeated for a range of initial number of classes. In detail, 
for the k-means classification the procedure is repeated 
multiple times for centroids ranging from 6 to 13, while for 
the SOM classification for two-dimensional lattices that 
correspond to classes ranging from 12 to 36, with varying 
number of row and column neurons. The optimum number in 
both cases is selected from the qualitative examination of the 
resulting composite MSLP maps. 

III. RESULS 
A general remark from the multiple experiments of 

generating atmospheric circulation types from both 
classifications is that in many cases the resulting MSLP 
composites were suboptimal. The qualitative analysis of the 
resulting patterns identified an optimum number of ten 
clusters for the k-means classification (Fig. 3) and twenty 
atmospheric states for the SOM classification (Fig. 6), which 
are mapped along a 4-row and 5-column hexagonal topology. 
The relative frequencies of each type in both cases are 
presented in Fig. 4 and Fig. 7 respectively, whereas their 
monthly frequencies of occurrence are presented in Fig. 5 and 
Fig. 8 respectively. 

A. k-means circulation patterns 
The k-means circulation classification (Fig. 3) resulted in 

two types influenced by low-pressure systems (K1 and K2 
types), in two patterns characterized by high-pressure systems 
(K3 and K4 types), in three smooth fields with minimal 
pressure gradient (K5, K6 and K7 types) and in three states 
where the atmospheric circulation is influenced by both high 
and low pressure systems (K8, K9 and K10 types). The 
description of the relevant circulation patterns is presented in 
terms of the most important atmospheric circulation 
characteristics in Table 1 and their relative frequencies of 
occurrence in Fig. 4. 

According to the K1 circulation type, a low-pressure 
system is located over central Italy that causes a southerly 
wind field component over Greece, whereas the center of the 
low-pressure system for the K2 type is over the British Isles, 
leading to a vertical distribution of MSLP in southeastern 
Europe. The K1 and K2 types are observed throughout the 
spring period (Fig. 5), with their higher monthly frequencies 
being observed during April (44.1% and 40.5% respectively). 
The K3 circulation pattern is the most infrequent type during 
spring (Fig. 4), representing the 4.4% of the total classified 
cases (250 days), where an extended anticyclone is located 
over central Europe. The K3 pattern is a characteristic cold 
period type, with 87.6% of its days being observed during 
March. The high-pressure system in K4 type is the extension 
of the Siberian anticyclone, located over western Russia and 
the Baltic countries. The K4 type is also mainly observed 
during March (55.7% of its total days) and causes a rather 
strong pressure gradient in the Balkans and Greece. The K5, 
K6 and K7 types are the most common circulation patterns 
during spring, which represent overall the 42.7% of the total 
classified days (Fig. 4). The pressure systems in all cases are 
attenuated, leading to smooth pressure fields that favor the 
development of local flows in southeastern Europe. The types 
are more frequent during May (49.6%, 36.4% and 43.7% 
respectively) and are commonly observed during the warm 
period of the year. According to K8 and K9 circulation types 
(Fig. 3), a low-pressure system is located in northern Europe 
over Nordic countries, while an anticyclone is positioned in 
the Iberian Peninsula. The two patterns differentiate in the 
relative position of the low-pressure system and the degree of 
the anticyclone penetration in western Mediterranean. The K8 
and K9 types are more frequent during early spring (Fig. 5) 
and are mainly observed during March (40.7% and 62.5% 
respectively). The main characteristic of the K10 type is the 
easterly extension of the Azores anticyclone in western and 
central Europe, which in combination with the low-pressure 
field in the Middle East, leads to a northerly sector wind field 
in southeastern Europe. The K10 type is one of the most 
frequent patterns during spring (13.4% of the total classified 
days) with its higher frequency being observed during May 
(316 days).  

B. SOM circulation patterns 
The circulation patterns of the SOM classification are 

mapped according to the influence of the high and low-
pressure systems (Fig. 6). The description of the relevant SOM 
circulation patterns is presented in terms of the most important 
atmospheric circulation characteristics in Table 2, their 
relative frequencies of occurrence in Fig. 7 and the monthly 
frequencies in Fig. 8. In the lower left part of the map the 
patterns are mainly influenced by the existence of high-
pressure systems in Europe, while the relative location of the 
low-pressure systems is the primary characteristic of the upper 
right part. This finding is in accordance with previous studies 
[29] and it is attributed to the inherent characteristic of the 
SOM method to self-organize. The nodes (neurons) exist on a 
continuum and enable the understanding of phases as well as 
the transitional nodes between phases [2]. 
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Fig. 3 The k-means classification circulation types, K1 (a), K2 (b), K3 (c) 

 

 

 

Fig. 4 Relative (and absolute) frequency of occurrence of the k-means classification circulation types 
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Table 1:  Description of the k-means classification circulation types 

 
Abbreviation 

 
Circulation type Description 

K1 Cyclonic Low-pressure system over central Italy 
K2 Cyclonic Low-pressure system over the British Isles 
K3 Anticyclonic Extended anticyclone over central Europe 
K4 Anticyclonic Extension of the Siberian anticyclone over western Russia and the Baltic countries 
K5 Smooth Smooth pressure field that favor the development of local flows 
K6 Smooth Smooth pressure field that favor the development of local flows 
K7 Smooth Smooth pressure field that favor the development of local flows 

K8 High – Low 
combination 

Low-pressure system in northern Europe over Nordic countries - Anticyclone in the 
Iberian Peninsula 

K9 High – Low 
combination 

Low-pressure system in northern Europe over Nordic countries - Anticyclone in the 
Iberian Peninsula 

K10 High – Low 
combination 

Easterly extension of the Azores anticyclone in western and central Europe in 
combination with the low-pressure field in the Middle East 

 
 
 
 
 
 

 
 

Fig. 5 Monthly frequencies of the ten k-means clusters, from K1 (i) to K10 (j)  
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Fig. 6 The SOM classification circulation types 

 

 

 

Fig. 7 Relative (and absolute) frequency of occurrence for the SOM classification circulation types 
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Table 2: Description of the SOM classification circulation types 

 
Abbreviation 

 
 

Circulation type 
 

Description 

SOM1.1 High – Low 
Combination 

Combination of the extended anticyclone in central Europe and the relative low-
pressure field of the Middle East 

SOM2.1 High – Low 
Combination 

Combination of the extended anticyclone over the UK and the Netherlands and the 
relative low-pressure field of the Middle East 

SOM3.1 Cyclonic Relative low-pressure field over Greece and the Balkans 

SOM4.1 High – Low 
Combination High and low pressure fields at the west and east of Greece respectively 

SOM5.1 Anticylconic Anticyclone at the north of the Iberian peninsula which extends over the whole 
Mediterranean Sea 

SOM1.2 Anticylconic Anticyclone in northern Europe at the Baltics which extends over the Balkans and 
Greece 

SOM2.2 Smooth Smooth field that favor the development of local flows 
SOM3.2 Smooth Smooth field that favor the development of local flows 
SOM4.2 Smooth Smooth field that favor the development of local flows 

SOM5.2 Anticylconic High-pressure system in the Iberia peninsula which extends over the eastern 
Mediterranean 

SOM1.3 Anticylconic The Siberian anticyclone is extended over the Balkans 
SOM2.3 Smooth Smooth pressure field for the entire European continent 
SOM3.3 Cyclonic Low-pressure system of the Adriatic Sea and Italy 
SOM4.3 Cyclonic Extended low-pressure system over central Europe. 
SOM5.3 Cyclonic Low-pressure in northeastern Europe 

SOM1.4 Anticylconic Weak Azores high penetration in the eastern Mediterranean that favors the 
development of local flows 

SOM2.4 Cyclonic Deep low in the UK does not affect Southeastern Europe 

SOM3.4 High – Low 
Combination High-low combination over Western and Eastern Europe 

SOM4.4 Cyclonic Deep low-pressure system situated at North Sea 
SOM5.4 Cyclonic Low-pressure system, located at the north of Greece 

 

Table 3: Agreement in percent between the SOM and the k-means circulation patterns 

 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 
SOM1.1 0.0 0.0 76.6 21.6 0.0 0.0 0.0 0.0 0.0 1.8 
SOM2.1 0.0 0.0 1.5 33.0 0.0 0.0 4.0 0.0 0.0 61.5 
SOM1.3 1.7 0.0 0.0 0.3 50.1 0.0 30.4 0.0 0.0 17.5 
SOM1.4 0.0 0.0 0.0 0.3 39.2 1.6 3.2 0.5 2.4 52.7 
SOM1.5 0.0 0.0 44.6 2.4 0.0 0.0 0.0 0.0 19.3 33.7 
SOM2.1 0.0 0.0 0.4 80.8 0.0 0.0 17.7 0.0 0.0 1.1 
SOM2.2 0.6 0.3 0.0 4.8 4.0 1.1 88.9 0.0 0.0 0.3 
SOM2.3 22.0 1.5 0.0 0.0 74.4 0.0 1.5 0.0 0.6 0.0 
SOM2.4 1.3 11.1 0.0 0.0 22.4 49.2 6.3 6.1 1.8 1.8 
SOM2.5 0.0 0.0 2.1 0.0 1.5 0.0 0.0 10.3 85.1 1.0 
SOM3.1 0.0 0.0 44.2 16.0 0.0 29.8 0.0 0.0 2.2 7.7 
SOM3.2 0.0 0.0 0.2 15.9 1.3 30.7 17.3 0.0 0.0 34.5 
SOM3.3 31.0 5.3 0.0 0.0 32.4 7.5 19.1 3.9 0.0 0.8 
SOM3.4 44.3 52.6 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 
SOM3.5 24.4 8.0 0.0 0.0 6.2 0.0 0.0 59.6 1.8 0.0 
SOM4.1 1.8 0.0 0.0 0.0 4.7 41.2 0.0 25.3 10.0 16.9 
SOM4.2 5.7 31.3 0.0 0.0 0.0 55.7 0.6 6.8 0.0 0.0 
SOM4.3 9.4 14.9 0.0 3.5 0.0 10.9 61.4 0.0 0.0 0.0 
SOM4.4 15.1 51.4 0.0 0.0 0.0 0.0 0.0 33.5 0.0 0.0 
SOM4.5 0.0 0.9 0.0 0.0 0.0 13.7 0.0 56.8 28.6 0.0 
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Fig. 8 Monthly frequencies of the twenty SOM circulation types 

 

 

In SOM1.1 (Fig. 6), which,  according to Fig. 7 is the 
most infrequent circulation pattern (1.9% of the total cases), 
the eastern Mediterranean and Greece are influenced from the 
combination of the extended anticyclone in central Europe and 
the relative low-pressure field of the Middle East. A similar 
synoptic regime is observed in SOM2.1, differing only in the 
location of the center of the high-pressure system, which in 
this case is positioned over the UK and the Netherlands. The 
resulting pressure gradient in SOM2.1 is weaker, leading to a 
moderate northwesterly flow in Greece. Furthermore, the two 
patterns differ significantly in their monthly frequencies (Fig. 
8) with the SOM1.1 type mainly observed during March 
(93.6% of the total cases) while SOM2.1 is more frequent 
during May. The effect of the anticyclone in SOM3.1 is 
further weakened and a relative low-pressure field is observed 
over Greece and the Balkans. The pressure gradient in Greece 
is weak and the pattern is mainly observed during April and 
May (85.2% of the total days).  According to SOM4.1 pattern, 
Greece is under the influence of the high and low pressure 
fields in its west and east respectively. The pressure gradient is 
weak and the pattern is more frequent during May (44.3% of 
the total cases). The SOM5.1 circulation pattern is mainly 
observed during March, where the anticyclone located at the 
north of the Iberian peninsula, extends over the whole 
Mediterranean Sea leading to a vertical distribution of MSLP 
in Greece. 

The characteristic of the SOM1.2 circulation pattern (Fig. 
6) is the anticyclone located in northern Europe at the Baltics, 

which extends over the Balkans and Greece. The pressure 
gradient in Eastern Europe is strong, leading to a northeasterly 
flow. This pattern is mainly observed during March (67.9%). 
The SOM2.2, SOM3.2 and SOM4.2 patterns are characteristic 
cases of smooth fields that favor the development of local 
flows in the eastern Mediterranean and Greece, with their 
maximum monthly frequencies being observed during May 
(Fig. 8). The smooth field patterns are among the most 
frequent circulation types for the examined period with 
relative frequencies greater than 5.7% (Fig. 7). According to 
the SOM5.2 circulation pattern, the Iberia peninsula high-
pressure system extends over the eastern Mediterranean, 
leading to a northerly flow in Greece. The pattern is mainly 
observed during March (65.6% of the total cases) and its main 
difference with the SOM5.1 type is the existence of the deep 
low system over Scandinavia, which extends throughout 
Russia and the Ukraine without affecting the Balkans and 
Greece. The SOM5.1 and SOM5.2 types are rather infrequent 
for the examined period with relative frequencies 2.9% and 
3.4% respectively (Fig. 7).  

An additional pattern that favors the development of local 
flows in Greece is the SOM1.4 type, where the Azores high is 
significantly weakened in the eastern Mediterranean (Fig. 6). 
The field is smooth with higher monthly frequency observed 
during May (41.1% in total).  A similar smooth field in Greece 
is present in SOM2.4 pattern, where the deep low located in 
the UK is significantly weakened and does not affect 
Southeastern Europe. According to SOM3.4 pattern,  
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Western Europe is affected by a high-low combination, 
while Eastern Europe is primary influenced by the high-
pressure system located in Russia. Regarding the SOM4.4 
type, the atmospheric circulation in Europe is exclusively 
influenced by the deep low-pressure system situated at North 
Sea. The wind field in Greece is from southern directions and 
the type is mainly observed during March and April (84.4% of 
days in total). The center of the low-pressure system according 
to the mean condition described by the SOM5.4 surface 
distribution, is located even northerly and its effect is highly 
attenuated for the southeastern Europe and Greece. This type 
is mainly observed during March (64.8% of the cases), with 
227 days in total being categorized in this characteristic 
synoptic regime (Fig. 8).     

 

C. Comparison of the atmospheric circulation 
classifications 

The two classification schemes produce similar circulation 
types. The comparison of two classifications is presented in 
terms of examining the distribution of each SOM circulation 
type days to the k-means patterns (Table 3). Regarding the 
circulation types that are characterized by the existence of a 
low-pressure system in Europe, the SOM3.3 and the SOM3.4 
types share common characteristics with K1 circulation type, 
differentiating in the relative position of the low-pressure 
system. Furthermore, 84.9% of the SOM4.4 days are classified 
as members of the K2 and K8 types, while the surface 
pressure distribution of the SOM3.5, SOM4.5 and the K8 
types is depicted from the existence of a low-pressure system 
in northern Europe. The characteristic synoptic condition of 
the SOM2.5 is almost identical to the K9 type, resulting in a 
high agreement percentage (85.1%). For both classifications 
an increased number of days are classified into smooth 
pressure patterns with minimal pressure gradient in 
southeastern Europe. In detail, the days classified into the 
SOM1.3 and SOM2.3 patterns have high agreement 
percentages with the K5 circulation type (50.1% and 74.4% 
respectively), while the SOM2.4, SOM4.1 and SOM4.2 
patterns are similar to the K6 circulation type. The SOM2.2 
type is almost identical with the K7 pattern, with a total 
agreement of 88.9%. The two classification schemes provide 
more consistent results for the high-pressure system patterns. 
The SOM1.1 and SOM1.5 types, due to their cold period 
character, are mainly observed during March and are similar 
to the K3 type. Furthermore, high agreement percentage 
(80.8%) is observed between the SOM2.1 and the K4 types, 
which are also commonly observed during March. The 
synoptic situation for both SOM1.2 and SOM1.4 types share 
some common characteristics with the K10 pattern, where an 
anticyclone is located at the north of the Iberian Peninsula and 
in the British Isles. The similarity between the resulting 
patterns of the two classifications is further established from 
the high correspondence of their monthly frequency of 
occurrence. 

IV. CONCLUSIONS 
In this study two automated atmospheric circulation 

classification schemes are presented and examined for their 
ability to produce meaningful circulation types for the spring 
season in southeastern Europe. Both classifications, following 
the circulation-to-environment approach, can be used for 
relating the circulation types with regional or local scale 
meteorology and climatology. The k-means classification 
includes ten distinct types, while the SOM required more 
neurons to describe with discrete atmospheric states the daily 
MSLP distribution for the area and period under study. Both 
methods (k-means and SOM) are designed to achieve optimal 
distribution of objects (daily patterns) into the classes. The 
reason for reaching different result is that k-means can be 
trapped in local minima of the minimization function 
(reduction of within-type variance) while SOM is able to 
approach the global optimum. Meaningful relations are 
obtained in all cases. The correspondence of the two 
classifications is higher for the types where the high-pressure 
systems define the atmospheric circulation in the examined 
region. The SOM scheme has the ability to account for non-
linear relationships and produce a map where synoptic states 
that are closely related are positioned in adjacent locations. In 
our case the high-pressure patterns are positioned in the lower 
left part of the map while the low-pressure patterns are located 
in the upper right part. Future work is proposed for developing 
a two-step classification scheme using both of the examined 
methods. The SOM can be used to decrease and reduce noise 
by producing a high number of atmospheric states which can 
be subsequently further grouped into a highly practical daily 
catalogue by applying k-means cluster analysis. 
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